| 1. | ( 3 ) the symplectic integrator method is applied to time evolution of the scalar wave equation ( 3 )将辛算法运用到标量波动方程的时域模拟中。 |
| 2. | ( 2 ) the symplectic integrator method is applied to the high frequency asymptotic evolution of the wave equation based on maslov symplectic geometrical theory ( 2 )将辛算法运用到基于masiov ?辛几何理论的求解波动方程的高频近似方法中。 |
| 3. | The symplectic integrator method is the new time - domain method which is specialized to a hamiltonian system and can preserve the symple ctic structure of the phase space 辛算法正是用来保持hamilton系统相空间辛结构的一种新的数值方法,并且在计算精度、时间上具有优越性。 |
| 4. | The accuracy , computational time and required memory of the symplectic prk method are compared with the standard fdtd method . the results show that the symplectic integrator method is promising 本文比较了二维时fdtd法和辛算法的精度、计算时间和内存空间,结果显示了辛算法的优越性。 |
| 5. | Classic u - i model is simple . however the integrator inevitably bring up the error accumulation and dc drift . this paper present a new integrator method . it has been proved to be a successful alternative for integrator , but in simulation it is found not fit for dtc 定子磁链的观测是dtc的关键技术,传统的u - i模型结构简单,实用,但是由于积分器将电流检测中的直流偏置累加,而且对定子电阻的变化鲁棒性不够。 |
| 6. | The author focuses discussion on maxwell equations in two dimensions involving respectively the two conditions that the current density is zero and the current density exists . the symplectic integrator method is implicit except that the hamiltonian is separable . but when the current density exists , the hamiltonian is not separable 主要分析了二维情形下电流密度为零和电流密度存在时的两种情况,由于第二种情况下maxwell方程不是可分的hamilton系统,因此理论上文中提出的显式辛算法不可行,但是证明了辛prk方法仍然可以运用,且格式依然保持显示。 |
| 7. | The main studies are as follows : ( 1 ) the hamiltonian mechanics and equations are deduced from the lagrange mechanics . the symplectic quality of the hamiltonian system is discussed . the formulations of the symplectic integrator method are constructed , especially the explicit symplectic schemes for the separable hamiltonian system and the symplectic partitioned runge - kutta ( prk ) method for the generic hamiltonian system 本文对该方法进行了初步的研究和计算应用,具体展开了以下几方面的工作: ( 1 )从lagrange力学出发引入hamilton力学和hamilton正则方程的概念,讨论了hamilton系统的辛性质,给出了构造辛算法的基本原理,并重点介绍了线性可分hamilton系统的显式辛格式和一般hamilton系统的辛prk方法。 |